Local Subspace Classifier with Transform-Invariance for Image Classification
نویسندگان
چکیده
منابع مشابه
Image Classification Using Naive Bayes Classifier With Pairwise Local Observations
We propose a pairwise local observation-based Naive Bayes (NBPLO) classifier for image classification. First, we find the salient regions (SRs) and the Keypoints (KPs) as the local observations. Second, we describe the discriminative pairwise local observations using Bag-of-features (BoF) histogram. Third, we train the object class models by using random forest to develop the NBPLO classifier f...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملLearning the Classifier Combination for Image Classification
Although some image features and algorithms succeed in many tasks such as scene recognition and face recognition, carefully choosing image features and classifiers are time consuming for a specific image classification task. In this paper, we propose a method that automatically combines the classifiers with probability outputs from different features. We fomulate the problem in quadric programm...
متن کاملMultiple Classifier Ensembles with Band Clustering for Hyperspectral Image Classification
Due to the high dimensionality of a hyperspectral image, classification accuracy of a single classifier may be limited when the size of the training set is small. A divide-and-conquer approach has been proposed, where a classifier is applied to each group of bands and the final output will be the fused result of multiple classifiers. Since the dimensionality in each band group is much lower, cl...
متن کاملMixed acoustic events classification using ICA and subspace classifier
This paper describes a new neural architecture for unsupervised learning of a classi cation of mixed transient signals. This method is based on neural techniques for blind separation of sources and subspace methods. The feed-forward neural network dynamically builds and refreshes an acoustic events classication by detecting novelties, creating and deleting classes. A self-organization process a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2008
ISSN: 0916-8532,1745-1361
DOI: 10.1093/ietisy/e91-d.6.1756